我是如何度过数学分析的ldquo菜鸟

北京知名皮肤病医院 http://m.39.net/pf/a_9057026.html

本文转载自哆嗒数学网。是作者刚刚度过数学专业的大一“菜鸟季”,写下的一篇数学分析学习心得,与各位网友分享。应作者要求,通过哆嗒数学网匿名发布。

数学分析,简称数分,主要内容是微积分,是数学专业数学学习的开端,也是通往未来更高等数学的开端。同样,它是分析方向的基础,学好数学分析非常重要。

数分和中学数学有着非常大的区别,可以说,中学和中学以前的数学,都是在介绍各种运算法则,理论性的东西非常之少。到了数分上,就有了非常多的理解性东西,虽然某些概念的定义仍然是用数学符号表达,但是要想完全彻底的理解概念,还是要做深入的思考,而不是像中学那样,仅仅是训练公式的熟练度。

对任何一门学科,教材和题集的选取都是至关重要的。这里说下笔者的体会,华东师大的两本书很适合入门,也是普遍普通数学系的数分教材。但是数分是很多后面科目的基础,包括后续的分析内容,实复分析,泛函调和分析,还有一些其他分支,例如微分几何,微分方程等等,一本好的数分教材应该稍微涉及到其他数学科目的基本概念。

这里推荐徐森林的《数学分析》。笔者在自学这套教材之后,发现它和普通数分教材比,有很多优点,列举如下:在讲授单元积分学时,本书通过引入零测集的概念,给出可积的充要条件,这对后续学习测度论有益;在讲授多元极限前,普遍本科生已经熟悉了单元极限,本书在此引入了拓扑学的一些基本概念,拓扑,度量空间,紧致集等,首先把开集推广到一般情况,进而把极限以及连续性推广到一般拓扑空间上,最后将连续性的一些定理推广到了一般拓扑空间上,这样,单元中所接触到的单侧极限,广义极限也仅仅是特例,再讲授多元极限,自然水到渠成;在讲授傅里叶级数时,引入了傅里叶积分和傅里叶变换,它们是调和分析的内容,可以用来计算某些含三角函数的积分的简便公式;在讲授多元积分的三大公式——斯托克斯公式、高斯公式、格林公式时,本书借助微分形式和外微分算子,将他们统一成一个公式,公式的统一既深入理解了三大公式的关系,又对后续学习流形有益。

俄罗斯有一套《微积分学教程》,国内的很多数分教材都深受本书影响,本书可以说是数分的一本工具书,它含有大量的例题,并且内容非常丰富,包含了很多普遍教材没有的内容,例如绪论的通过证明有理数的不完备性,引入无理数,再证明实数完备性的内容,是大部分数分教材没有篇幅可以介绍的;高阶导数部分介绍埃尔米特差值公式;不定积分处介绍椭圆积分;正项级数的库默尔判别法;函数项级数处的拟一致收敛等等。但是本书是20世纪初所著的,当时测度论还不完善,所以并不包含比如可积的充要条件为不连续的点是零测集,这样的重要内容。对有能力的学生,可以选择卢丁(Rudin)的《数学分析原理》,本书是作者卢丁所著的分析三部曲第一本,后两本则是《实分析和复分析》与《泛函分析》。这本书比上述教材都更有难度,因为它是直接从拓扑角度讲数分的,并且为了和后两本衔接,还引入了基本测度论。对于有能力的同学不妨一试。

下面说题集。对于大多数学生,天资并没达到天才的层次,光看教材是不能完全理解理论的,这一点越到后面更难的科目更能体现出来。应用理论解决问题,是理解理论的重要途径。但是,如果仅仅是看解答,并不会有太大进步的,经常直接看解答会让你对答案产生依赖,懒惰会让你不再独立思考,这就相当于你是在拄着拐杖走路。一旦到了需要独立解决问题的时候,就相当于拿走了你的拐杖,这时便很难行走了。因此,做题时独立思考是非常重要的,可以毫不夸张的说,独立做出一道题,比看十个解答都有用。这里按难度从易到难,推荐如下题集:裴礼文的《数学分析中的典型问题与方法》,这本书很适合准备考研;徐森林的《数学分析精选习题全解》这套就是和徐森林的《数学分析》配套的题集,值得一提的是科大的数分教材史济怀和常庚哲合著的《数学分析教程》上大部分有难度的课后习题,都可以在本书中找到解答;周民强《数学分析习题演练》,这一套很有难度,事实上大多题目来自W.J.Kaczor和M.T.Nowak所著的三本题集《ProblmsinMathmaticalAnalysis》;Poyla的《数学分析中的问题和定理》,Polya大师的这一套虽然是题集,但是观点非常高,可以说是数分难题的顶峰,借助问题来引出各种定理和技巧。最后推荐的这本书,笔者认为是学习数学分析的必读书目,但是笔者发现很难将它分在教材还是题集中,因此放在最后介绍,这套书叫谢慧民等著的《数学分析习题课讲义》,分上下两册,可以算作带有题集的学习辅导书。大部分学习辅导书,都是通过重述定理定义内容以及题目和解答来"讲"概念和定理的,本书却大篇幅的具体讲述各种定理该如何理解,一些相似概念的区别和联系,说它是难得的一套从浅如深理解数分的好书绝不为过。每一章最后,都有参考题,难度适中,缺点是题目没有给出解答或提示,这对初学者来说十分不方便。

自己看书做题是一方面,和他人讨论是更好的学习方式。可以参加学校组织的或者个人组织的研讨班,包括讨论定理或概念该如何理解,自己遇到困难的题目有哪些思路。还可以在一些数学网站上讨论数学,在较正规的数学网站上发言,往往需要LaTX打公式,有兴趣的学生可以自学下,并不是很难。

最后笔者推荐几个数学网站。这是博士数学论坛(Math.org.cn),是国内最专业的数学网站,有很多高校的数学高手和数学系老师常驻。SE数学版(math.StackExchang.


转载请注明:http://www.aierlanlan.com/rzgz/770.html

  • 上一篇文章:
  •   
  • 下一篇文章: